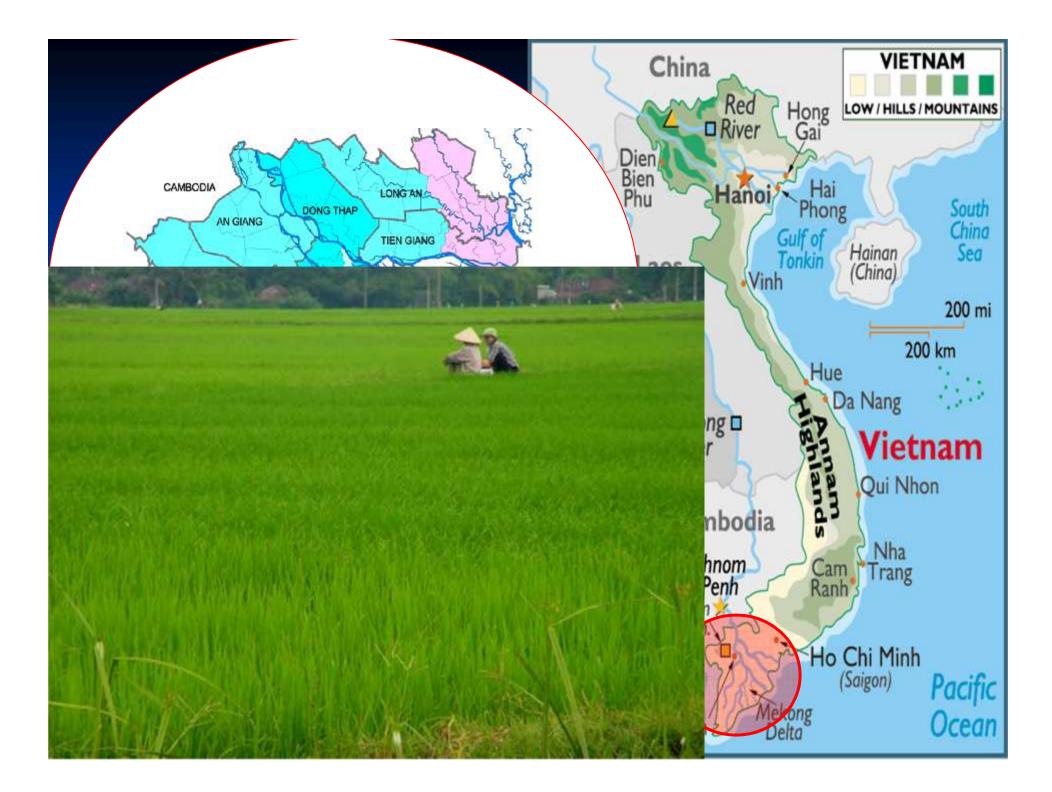


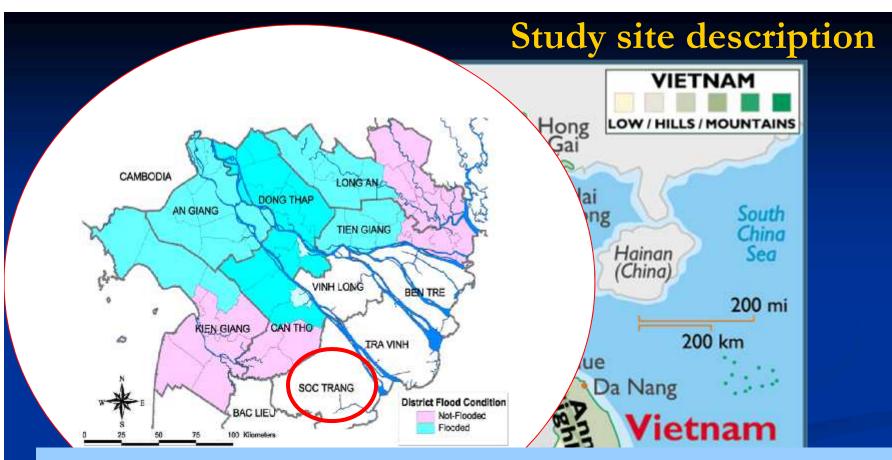
# CLIMATE CHANGE IMPACT ON RICE PRODUCTION AND ADAPTATION: A CASE STUDY OF SALINITY INTRUSION IN COASTAL AREAS OF THE MEKONG DELTA, VIETNAM

Huynh Viet Khai, Huynh Thi Dan Xuan and Tran Thi Thu Duyen College of Economics, Can Tho University, Vietnam

This project funded by SEARCA

# Online


Introduction


- Study site description and data collection
- Methodology
- Results and discussion

Conclusion

### Introduction

- Climate change has become one of the major threats
- Vietnam is one of five countries that may be the most seriously affected by global climate change and a consequent rise in sea level
- Salinity lands in the Mekong Delta region are relatively large compared to the whole country
- Although there have been many studies on evaluating the effects of salinity intrusion in rice production, no studies have evaluated specific statistics about the decline of rice production





 By mid-March 2016, all 13 provinces in the Mekong Delta were seriously affected by the most severe drought and saline intrusion in the past 100 years.

Long

Xuven

ucijic

Ocean

#### Mekong Delta farmers grapple with worst saline intrusion

VNA Monday, March 07, 2016 - 15:04:48 OPrint



A rice field in Lich Hoi Thuong commune of Soc Trang province dies of saltwater intrusion (Photo: VNA)

Can The (VNA) - Mekong Delta farmers are struggling with the worst water shortages and saltwater intrusion in nearly a century.

The Mekong Delta has nearly 4 million bectares of farmland, accounting for almost 30 percent of Vietnam's total farmland area, with over 50 percent under rice.



A rice field in Tran De district of Soc Trang province dies of saltwater intrusion

# **Data Collection**

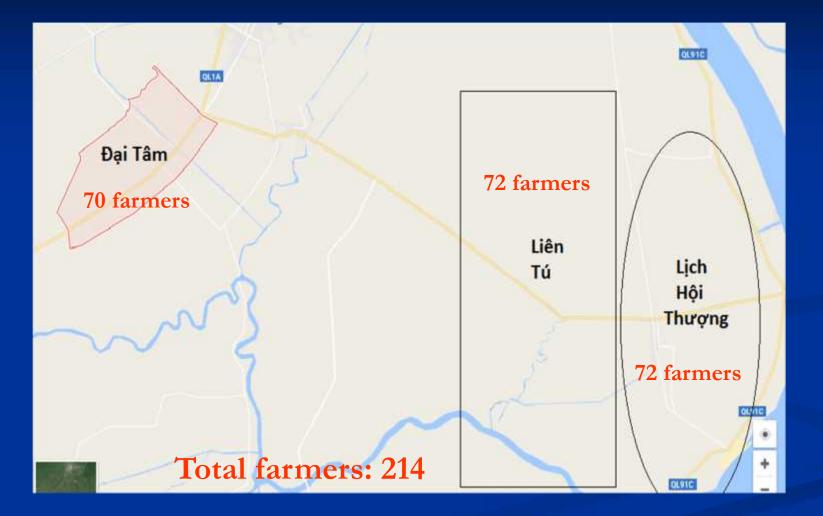



Figure 1. Map showing study site.

# Study site description

Table 1. The situation of Salinity in the study areas in 2016

|                    | Unit             | Non-salinity | Area of          | Area of     |
|--------------------|------------------|--------------|------------------|-------------|
|                    |                  | area         | Salinity 1 (Lieu | Salinity 2  |
|                    |                  | (Dai Tam)    | Tu)              | (Lich Hoi   |
|                    |                  |              |                  | Thuong)     |
| Period of salinity | month            | December     | 12, 2015 – Febru | ary 2, 2016 |
| Average level of   | º/0 <sub>0</sub> | 0.0 - 0.3    | 0.8-2.8          | 1.7-2.8     |
| salinity           |                  |              |                  |             |

Source: The statistic office of My Xuyen and Tran De, 2016

### Table 2. Farmers' perception on salinity in study areas

|                    | Non-salinity area |             | Area of Salinity 1 |             | Area of Salinity 2 |             |
|--------------------|-------------------|-------------|--------------------|-------------|--------------------|-------------|
|                    | (Dai Tam)         |             | (Lieu Tu)          |             | (Lich Hoi Thuong)  |             |
|                    | Number            | Percent (%) | Number             | Percent (%) | Number             | Percent (%) |
| Rice production    |                   |             |                    |             |                    |             |
| is not affected by | 69                | 98.57       | 2                  | 2.78        | 3                  | 4.17        |
| salinity           |                   |             |                    |             |                    |             |
| Rice production    |                   |             |                    |             |                    |             |
| is affected by     | 1                 | 1.43        | 70                 | 97.22       | 69                 | 95.83       |
| salinity           |                   |             |                    |             |                    |             |
| Total              | 70                | 100         | 72                 | 100         | 72                 | 100         |

Source: Own estimates; data appendix available from authors.



$$\begin{split} f_{salinity} &= \left(\overline{P} - \Delta P\right) \left(\overline{Q} - \Delta Q\right) - \left(\overline{C} + \Delta C\right) \\ &= \overline{P}\overline{Q} - \overline{P} \times \Delta Q - \Delta P \times \overline{Q} + \Delta P \times \Delta Q - \overline{C} - \Delta C \\ &= \left(\overline{P}\overline{Q} - \overline{C}\right) - \left(\overline{P} \times \Delta Q + \Delta P \times \overline{Q} + \Delta \overline{C}\right) + \Delta P \times \Delta Q \\ &= f_{non-salinity} - \text{Profit loss} \\ &= \text{Profit loss} = \overline{P} \times \Delta Q + \Delta P \times \overline{Q} + \Delta \overline{C} \\ &= \text{Quantity loss} + \text{Quality loss} + \text{Cost increase} \end{split}$$

 $\pi_{non-salinity}$  and  $\pi_{salinity}$  are the rice profits in the non-salinity and salinity areas.  $\Delta P \times \Delta Q$  is small compared with the other parts of the equation, it can be ignored and assumed to be 0 • Production function approach:

# $Y = f(L, K, I, Z, E, D_1, D_2)$

- Y is the rice yield of a farmer in the studied year (tones/ha)
- L is the number of labors for rice cultivation (man-days/ha)
- K is capital input (1,000VND/ha)
- I is a vector of material inputs as seeds (kg/ha), fertilizers (kg/ha), herbicide (ml/ha) and pesticides (ml/ha)
- Z is a vector of social-economic characteristics of farmers
- E is vector of farming conditions and environmental factors
- D1, D2 are the relative location of farms (D1=1 if the farmers in Lieu Tu which is considered as the area little affected by salinity, D2= 1 if the farmers in Lich Hoi Thuong which is considered as the area heavily affected by salinity; D1 = 0 and D2 = 0 if the farmers in Dai Tam which is considered as the area unaffected by salinity)

#### **Quantity loss**

- The reduced yield of rice is defined as:  $\Delta Y_1 = f(\overline{L}, \overline{K}, \overline{I}, \overline{Z}, \overline{E}, D_1 = 0, D_2 = 0) - f(\overline{L}, \overline{K}, \overline{I}, \overline{Z}, \overline{E}, D_1 = 1, D_2 = 0)$   $\Delta Y_2 = f(\overline{L}, \overline{K}, \overline{I}, \overline{Z}, \overline{E}, D_1 = 0, D_2 = 0) - f(\overline{L}, \overline{K}, \overline{I}, \overline{Z}, \overline{E}, D_1 = 0, D_2 = 1)$
- The translog production functional form:

$$\ln(Y) = r_{0} + r_{1}\ln(L) + r_{2}\ln(K) + r_{3}\ln(I) + \frac{1}{2}r_{11}\left(\ln(L)\right)^{2} + r_{12}\ln(L)\ln(K) + r_{13}\ln(L)\ln(I) + \frac{1}{2}r_{22}\left(\ln(K)\right)^{2} + r_{23}\ln(K)\ln(I) + \frac{1}{2}r_{33}\left(\ln(I)\right)^{2} + \sum_{k=1}^{5}s_{k}Z_{k} + \sum_{h=1}^{3}u_{h}E_{h} + x_{1}D_{1} + x_{2}D_{2} + V$$

• Check the constant returns to scale:

$$r_{1} + r_{2} + r_{3} = 1; r_{11} + r_{12} + r_{13} = 0$$
  
$$r_{12} + r_{22} + r_{23} = 0; r_{13} + r_{23} + r_{33} = 0$$

• Test the existence of Cobb-Douglass function:

$$\mathbf{r}_{11} = \mathbf{r}_{12} = \mathbf{r}_{13} = \mathbf{r}_{22} = \mathbf{r}_{23} = \mathbf{r}_{33} = \mathbf{0}$$
<sup>13</sup>

• Replacement cost approach :

 $C = C(W_s, W_h, W_f, W_p, Y, Z, E, D_1, D_2)$ 

- C is the total cost of a farmer (VND/ha),
- $W_s$  is the price of seed (VND/kg),
- $W_h$  is the price of herbicide (VND/100ml),  $W_f$  is the price of fertilizers (VND/kg),
- $W_p$  is the price of pesticides (VND/100ml),
- Y is the rice yield of a farmer in the studied year (tones/ha),
- Z is a vector of social-economic characteristics of farmers,
- *E* is a vector of farming conditions,
- $D_1$ ,  $D_2$  are the relative location of farms ( $D_1$ =1 if the farmers in Lieu Tu which is considered as the area little affected by salinity,  $D_2$ = 1 if the farmers in Lich Hoi Thuong which is considered as the area heavily affected by salinity;  $D_1$  = 0 and  $D_2$  = 0 if the farmers in Dai Tam which is considered as the area unaffected by salinity)

• The increase in input costs :

 $\Delta C_1 = C(\overline{W}_s, \overline{W}_h, \overline{W}_f, \overline{W}_p, \overline{Y}, \overline{Z}, \overline{E}, D_1 = 1, D_2 = 0) - C(\overline{W}_s, \overline{W}_h, \overline{W}_f, \overline{W}_p, \overline{Y}, \overline{Z}, \overline{E}, D_1 = 0, D_2 = 0)$  $\Delta C_2 = C(\overline{W}_s, \overline{W}_h, \overline{W}_f, \overline{W}_p, \overline{Y}, \overline{Z}, \overline{E}, D_1 = 0, D_2 = 1) - C(\overline{W}_s, \overline{W}_h, \overline{W}_f, \overline{W}_p, \overline{Y}, \overline{Z}, \overline{E}, D_1 = 0, D_2 = 0)$ 

• The Cobb-Douglas cost functional form:

$$\ln(C) = \{ {}_{0} + \{ {}_{1} \ln(W_{s}) + \{ {}_{2} \ln(W_{h}) + \{ {}_{3} \ln(W_{f}) + \{ {}_{4} \ln(W_{p}) + \{ {}_{5} \ln(Y) + \} \} \}$$
$$+ \sum_{k=1}^{4} S_{k} Z_{k} + \sum_{h=1}^{3} U_{h} E_{h} + X_{1} D_{1} + X_{2} D_{2} + V$$

# **Profit function approach:**

$$f *= f(W^*, C, Z, E, D_1, D_2)$$

- π\* is normalized profit defined as gross revenue minus variable cost divided by farm-specific output price,
- *W*\* is a vector of variable input prices divided by output price,
- *C* is a vector of fixed factors of the farm,
- Z is a vector of social-economic characteristics of farmers,
- *E* is a vector of farming conditions, and
- $D_1$ ,  $D_2$  are the relative location of farms ( $D_1$ =1 if the farmers in Lieu Tu which is considered as the area little affected by salinity,  $D_2$ = 1 if the farmers in Lich Hoi Thuong which is considered as the area heavily affected by salinity;  $D_1$  = 0 and  $D_2$  = 0 if the farmers in Dai Tam which is considered as the area unaffected by salinity) The loss of net economic return:

#### **Profit loss**

• The profit loss :

$$\Delta f_{1}^{*} = f\left(\bar{W}^{*}, \bar{C}, \bar{Z}, \bar{E}, D_{1} = 0, D_{2} = 0\right) - f\left(\bar{W}^{*}, \bar{C}, \bar{Z}, \bar{E}, D_{1} = 1, D_{2} = 0\right)$$
$$\Delta f_{2}^{*} = f\left(\bar{W}^{*}, \bar{C}, \bar{Z}, \bar{E}, D_{1} = 0, D_{2} = 0\right) - f\left(\bar{W}^{*}, \bar{C}, \bar{Z}, \bar{E}, D_{1} = 0, D_{2} = 1\right)$$

• The translog profit functional form:

$$f^{*} = \Gamma_{0} + \sum_{j=1}^{4} \Gamma_{j} \ln W_{j}^{*} + \frac{1}{2} \sum_{j=1}^{4} \sum_{k=1}^{4} \ddagger_{jk} \ln W_{j}^{*} \ln W_{k}^{*} + \sum_{j=1}^{4} \sum_{l=1}^{2} W_{jl} \ln W_{j}^{*} \ln C_{l} + \sum_{l=1}^{2} S_{l} \ln C_{l} + \frac{1}{2} \sum_{l=1}^{2} \sum_{l=1}^{2} \sum_{l=1}^{2} \left\{ \prod_{l=1}^{4} \ln C_{l} \ln C_{l} + \sum_{m=1}^{3} \sum_{m=1}^{3} m_{m} Z_{m}^{*} + \sum_{n=1}^{3} \sum_{l=1}^{3} \sum_{l=1}^{4} \pi_{l} N_{l} + \sum_{l=1}^{4} \sum_{l=1}^{2} \sum_{l=1}^{2} \sum_{l=1}^{2} \sum_{l=1}^{2} \left\{ \prod_{l=1}^{4} \ln C_{l} \ln C_{l} + \sum_{m=1}^{3} m_{m} Z_{m}^{*} + \sum_{n=1}^{3} \sum_{l=1}^{3} \sum_{l=1}^{4} \pi_{l} N_{l} + \sum_{l=1}^{4} \sum_{l=1}^{2} \sum_{l=1}^$$

• Test the existence of Cobb-Douglass function:

$$\ddagger_{jk} = \mathbb{W}_{jl} = \{ _{lt} = 0$$

# Lagrange Multiplier (LM) tests for heteroscedasticity

$$LM = nR^2 \sim t_k^2$$

n is the number of observations R<sup>2</sup> is the R-Square of  $|\hat{u}_i| = \tilde{u_0} + \tilde{u_1}X_{1i} + \tilde{u_2}X_{2i} + \dots + \tilde{u_k}X_{ki} + \tilde{v_i}$ k is the number of restricted factors

# **Correlation matrix method for multicollinearity**

Correlations in independent variables must be less than 70%

# **Results and discussion**



| Table 3. Descriptive statistics of rice production per hectare a year |              |            |            |                      |                        |
|-----------------------------------------------------------------------|--------------|------------|------------|----------------------|------------------------|
|                                                                       | Non-salinity | Salinity 1 | Salinity 2 | Difference           | Difference             |
|                                                                       | (1)          | (2)        | (3)        | (1) vs. (2)          | (1) vs. (3)            |
| Rice yield (tons)                                                     | 13.61        | 11.49      | 8.67       | 2.13***              | 4.94***                |
| Output price (Thousand                                                | 10.16        | 9.51       | 8.00       | 0.646*               | 2.15***                |
| VND)                                                                  |              |            |            |                      |                        |
| Family labor (days)                                                   | 23.18        | 30.15      | 20.19      | -6.97*               | 2.98 <sup>ns</sup>     |
| Capital (Thousand VND)                                                | 11,452       | 11,816     | 11,118     | -363.6 <sup>ns</sup> | 334.2 <sup>ns</sup>    |
| Seed (kg)                                                             | 293.14       | 388.53     | 383.2      | -95.4***             | -90.07***              |
| Herbicide (ml)                                                        | 2.940.74     | 2.331.15   | 2.186.8    | 609.59ns             | 753.94**               |
| Fertilizer (kg)                                                       | 1,145.62     | 1,128.8    | 1,056.2    | 16.86 <sup>ns</sup>  | 89.43 <sup>ns</sup>    |
| Pesticide (ml)                                                        | 5,203.14     | 6,784.61   | 6,348.2    | -1,581.5*            | -1,145.1 <sup>ns</sup> |
| Training (1=yes, 0=no)                                                | 0.64         | 0.46       | 0.42       | 0.18*                | 0.23*                  |
| Gender (1=male,                                                       | 0.89         | 0.90       | 0.81       | -0.02 <sup>ns</sup>  | 0.08 <sup>ns</sup>     |
| 0=female)                                                             |              |            |            |                      |                        |

Notes: ns: no significant; \*\*\*, \*\*, \* indicate statistical significance at the 0.01, 0.05 and 0.1 level respectively Source: Own estimates; data appendix available from authors.

| Table 3. Descriptive statistics of rice production per hectare a year |              |            |            |             |                   |  |
|-----------------------------------------------------------------------|--------------|------------|------------|-------------|-------------------|--|
|                                                                       | Non-salinity | Salinity 1 | Salinity 2 | Difference  | Difference        |  |
|                                                                       | (1)          | (2)        | (3)        | (1) vs. (2) | (1) vs. (3)       |  |
| Family member (persons)                                               | 4.37         | 4.57       | 4.85       | -0.198ns    | -0.48**           |  |
| Age (years)                                                           | 49.6         | 46.08      | 46.5       | 3.52**      | 3.1 <sup>ns</sup> |  |
| Experience (years)                                                    | 28.21        | 26.94      | 26.35      | 1.27ns      | 1.87ns            |  |
| Rice area (ha)                                                        | 2.20         | 1.86       | 1.56       | 0.34ns      | 0.64*             |  |
| Diseases (1=yes, 0=no)                                                | 0.41         | 0.44       | 0.57       | -0.03ns     | -0.155*           |  |
| Soil quality (1 = Vey no-                                             |              |            |            |             |                   |  |
| fertile, 2 = no-fertile, 3 =                                          | 2 44         | 2.0.4      | 2.71       | 0 17***     | 071***            |  |
| Medium, 4 = Fertile, and 5                                            | 3.41         | 2.94       | 2.71       | 0.47***     | 0.71***           |  |
| = Very fertile)                                                       |              |            |            |             |                   |  |
| Irrigation (1 = located in                                            |              |            |            |             |                   |  |
| the irrigation region, $0 =$                                          | 0.700        | 0.778      | 0.792      | -0.078ns    | -0.092ns          |  |
| Otherwise)                                                            |              | 1          |            |             |                   |  |

Notes: ns: no significant; \*\*\*, \*\*, \* indicate statistical significance at the 0.01, 0.05 and 0.1 level respectively Source: Own estimates; data appendix available from authors.

### Table 11. The OLS regression of rice profit function

| Variables          | Coef.                 | Robust Std. Err. | Variables      | Coef.                | Robust Std. Err. |
|--------------------|-----------------------|------------------|----------------|----------------------|------------------|
| $\ln(I_s)\ln(I_p)$ | -0.160***             | 0.091            | $Z_1$          | 0.023 <sup>ns</sup>  | 0.039            |
| $\ln(I_s)\ln(L)$   | 0.0114 <sup>ns</sup>  | 0.043            | $Z_2$          | $0.000823^{ns}$      | 0.0015           |
| $\ln(I_s)\ln(K)$   | 0.147 <sup>ns</sup>   | 0.294            | $Z_3$          | -0.013 <sup>ns</sup> | 0.024            |
| $\ln(I_w)\ln(I_f)$ | -0.0016 <sup>ns</sup> | 0.076            | $Z_4$          | 0.059*               | 0.029            |
| $\ln(I_w)\ln(I_p)$ | 0.009 <sup>ns</sup>   | 0.031            | $Z_5$          | 0.015 <sup>ns</sup>  | 0.013            |
| $\ln(I_w)\ln(L)$   | -0.024 <sup>ns</sup>  | 0.020            | E <sub>1</sub> | -0.087***            | 0.036            |
| $\ln(I_w)\ln(K)$   | -0.263 <sup>ns</sup>  | 0.181            | E <sub>2</sub> | 0.141***             | 0.045            |
| $\ln(I_f)\ln(I_p)$ | 0.017 <sup>ns</sup>   | 0.073            | E <sub>3</sub> | 0.076***             | 0.033            |
| $ln(I_f)ln(L)$     | -0.078 <sup>ns</sup>  | 0.050            | $\mathbf{D}_1$ | -0.203***            | 0.044            |
| $\ln(I_f)\ln(K)$   | 0.313 <sup>ns</sup>   | 0.316            | $\mathbf{D}_2$ | -0.353***            | 0.050            |
| $\ln(I_p)\ln(L)$   | 0.050***              | 0.020            | Constant       | -4.320               | 60.730           |
| R-square           | 0.64                  |                  |                |                      |                  |
| F-statistic        |                       |                  |                | 14.14                |                  |

Notes: \*\*\*, \*\*, \* indicate statistical significance at the 0.01, 0.05 and 0.1 level respectively Source: Own estimates; data appendix available from authors.

# Table 10. The OLS regression of rice cost function

| Variables               | Symbol         | Coef.     | Robust St.Er. |
|-------------------------|----------------|-----------|---------------|
| ln(Price of seed)       | $\ln(W_s)$     | 0.1327*** | 0.0208        |
| In(Price of herbicide)  | $\ln(W_w)$     | 0.1212**  | 0.0606        |
| ln(Price of fertilizer) | $\ln(W_f)$     | 0.0183    | 0.0612        |
| In(Price of pesticide)  | $\ln(W_p)$     | -0.0375   | 0.0269        |
| ln(Yield)               | ln(Y)          | 0.2053*** | 0.0510        |
| Age                     | $Z_1$          | 0.0007    | 0.0011        |
| Highschool              | $Z_2$          | 0.0346    | 0.0312        |
| Training                | $Z_3$          | -0.0331   | 0.0233        |
| Family members          | $Z_4$          | -0.0069   | 0.0115        |
| Irrigation              | E <sub>1</sub> | -0.0075   | 0.0264        |
| Soil quality            | E <sub>2</sub> | -0.0258*  | 0.0156        |
| Disease                 | E <sub>3</sub> | 0.0403*   | 0.0242        |
| Salinity 1              | D1             | 0.0810*** | 0.0303        |
| Salinity 2              | D2             | 0.0458    | 0.0378        |
| Constant                |                | 9.4719*** | 0.2755        |
| R-square                |                | 0         | ,25           |

### Table 11. The OLS regression of rice profit function

| Variables            | Symbol         | Coef.        | Robust<br>St.Er. |
|----------------------|----------------|--------------|------------------|
|                      | • • •          | •••          | •••              |
| Age                  | $Z_1$          | 9.53         | 15.94            |
| Highschool           | $Z_2$          | -140.29      | 543.48           |
| Training             | $Z_3$          | 492.17       | 378.75           |
| Disease              | E <sub>1</sub> | -523.28      | 394.14           |
| Soil quality         | E <sub>2</sub> | 943.02***    | 306.84           |
| Irrigation           | E <sub>3</sub> | 905.78**     | 445.12           |
| Salinity 1           | D1             | -2,010.43*** | 486.93           |
| Salinity 2           | D2             | -3,287.04*** | 606.61           |
| Constant             |                | 191,484.50   | 852,974.40       |
| R-square             |                | 0.63         |                  |
| Included observation |                | 214          |                  |

Notes: \*\*\*, \*\*, \* indicate statistical significance at the 0.01, 0.05 and 0.1 level respectively Source: Own estimates; data appendix available from authors.

# Table 5. Reduced yield in rice farming caused by salinity

|                                      | Reduced yield<br>(Tons/ha) | $\mathbf{C}$ |
|--------------------------------------|----------------------------|--------------|
| Salinity 1 vs. Non-<br>salinity area | 2.502                      | 18.382       |
| Salinity 2 vs. Non-<br>salinity area | 4.051                      | 29.765       |

# Conclusion

- The null hypothesis of constant returns to scale is rejected
- The Cobb-Douglass formal existence of production function is rejected
- Yield loss is about 2.5 4.05 tons per hectare and annual the profit loss was about VND 9.3 15.1 million tons per hectare
- Applying the intercropping system instead of current monocultivation to increase soil fertility and limit pest and diseases.
- Agricultural extensions and local authorities should regularly measure the salinity level of water resources
- Strengthen embankments and dams to store fresh water when saltwater intrusion occurs.



# Thank you very much for your attention