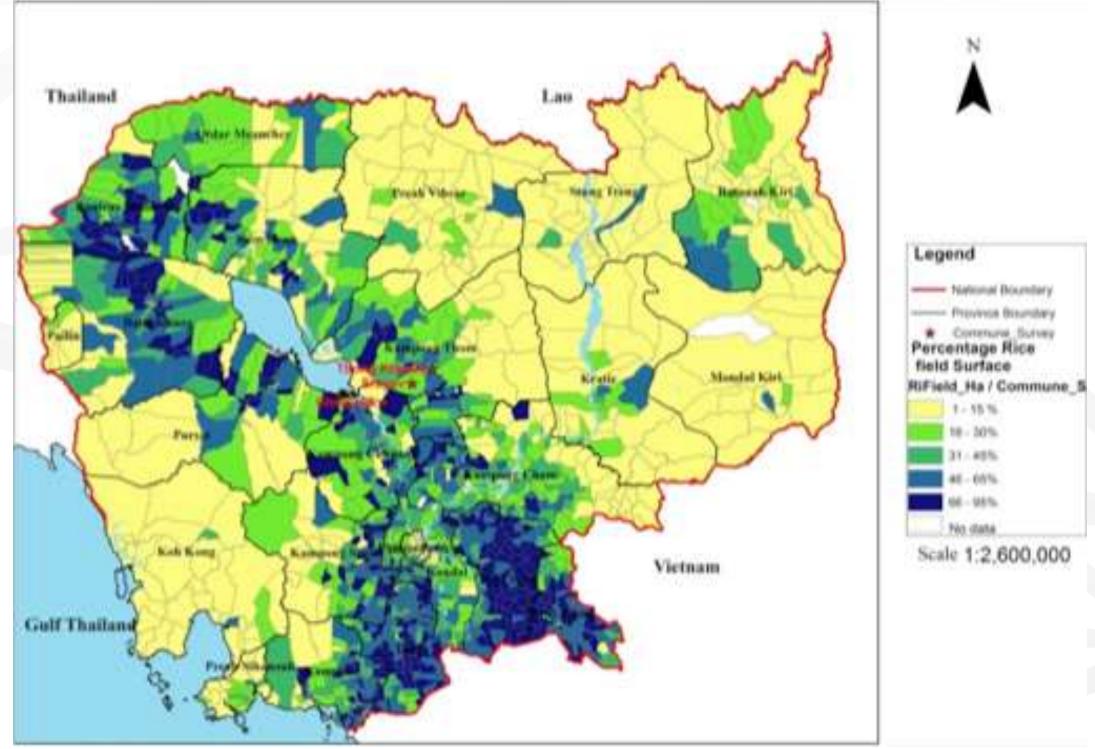


Trade-offs between ecosystem services in rice cropping system

Presented by NEANG Malyne,

Director of ECOLAND research center **Division of Research and Extension** Royal University of Agriculture nmalyne@rua.edu.kh http://www.rua.edu.kh/view_divicen/164256924384

Workshop on conservation of the floating rice - based agro-ecological farming systems in the Mekong Delta, Vietnam 06 - 07 Nov 2017



Introduction

Cambodia is an agricultural country and Indo-Burma biodiversity hotspot: 4 of the global 200 Ecoregions "habitats of terrestrial, aquatic, marine and bird species". Main agro-ecosystem: waste central floodplain of Tonle Thailand Sap Lake (TSL) and **Lower Mekong river** basin

- One quarter of the country's surface
- and equal to 80% of total rice field surface.
- High fertility but high risk of flood

Cambodian Important agro-ecosystem

- > 15,000 km² in rainy season (May-Oct) and 2,500 km² in Dry season (Nov-Apr).
- ► Biosphere Reserve of Cambodia and the world's most productive freshwater and wetland ecosystems :
 - fourth most productive captive fishery in the world, representing 16% of the Mekong river fish capture.
 - flood regulation "flood pulse"
 - and large seasonal reproductive grassland habitat to two-thirds of the world's bird populations.

Ecosystem of Tonle Sap Lake, a productive and vulnerable agroecosystem needs to be preserved

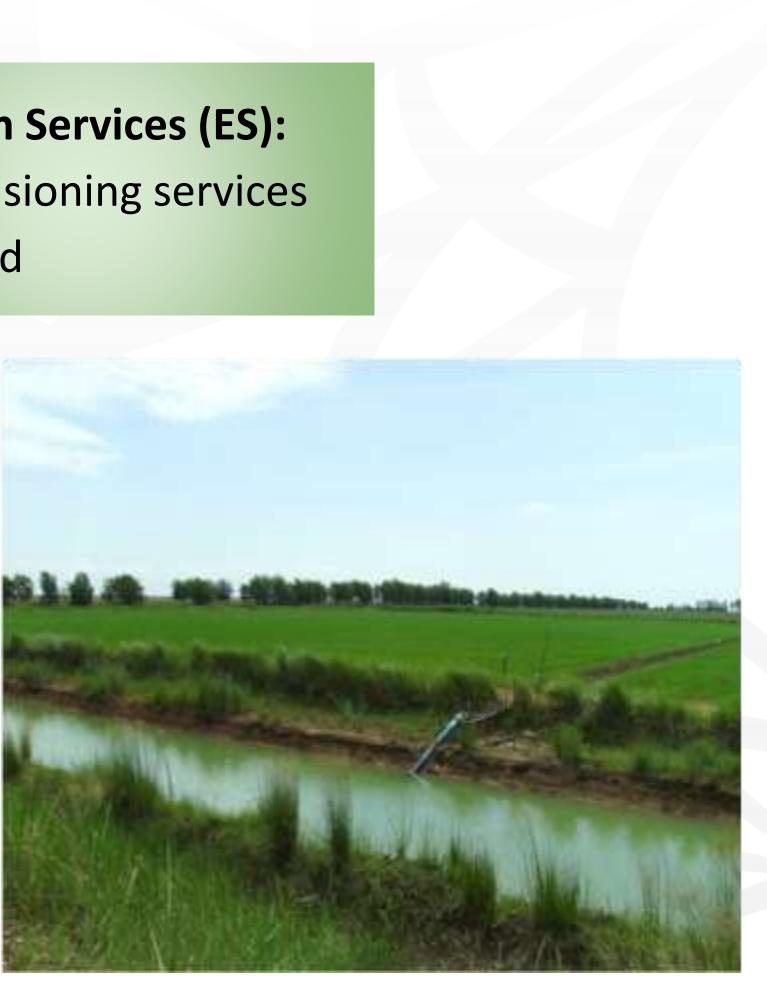
Farmer choices on an agro-ecosystem with high risk of flood

3 main strategies from farmers to combine different rice cropping systems on TLS agro-ecosystem:

- Increase productivity with low risk of flood: "shortterm rice"
- > Continue to produce despite floods and adapt to wate regime: "rainy season rice" and "floating rice"

Increase value-added: "organic rice"

Trade-off between Ecosystem Services in **Short-term rice**


A simple view

Ecosystem Services (ES): High Provisioning services - High Yield

Ecosystem Disservices

- **Disturb** water flow and sedimentation
- Decrease inland aquatic habitat and agrobiodiversity
- **Increase** Water and Soil Pollution
- Produce food with high chemical residues
- **Reduce** genetic resources in rice varieties

Trade-off between Ecosystem Services in **Short-term rice**

A simple view

Low provisioning service:

Low yield

Other provisioning serves:

- **NTFPs**
- Fish, Vegetables and other agro-biodiversity
- Grazing
- Fire wood

Others ES:

Regulating service:

- Flood regulation, Habitat and Biodiversity
- soil formation from deposit
- Preserve fauna, flora and amphibians of rice fields.
- Less chemical residue leaching into water.
- soil biodiversity and water quality

Economic comparison

An example

	Yield	Price	Income	Cost for Chemical Input		Cost for labour and others		Cost Rent land & Water	Margin 1 (without land and water cost)	Margin 2 (with land rent & water costs)
	<u>t/ha</u>	<u>\$/t</u>	<u>\$/ha</u>	<u>\$/h</u>	<u>a</u>	<u>\$/ha</u>		<u>\$/ha</u>	<u>\$/ha</u>	<u>\$/ha</u>
STR	4.65	200	930		220		344	236	366	130
FR	1.6	190	304		47		140	0	117	

Total cost: 800\$

Ecosystem Services and Land Use Research Centry

Perspective from different actors for rice sector in Cambodia

Government

Policy will : Productivity increase and export

Farmer

- Farmers like eating floating rice
- Farmers advised that floating rice is good for health, in particular older people because this rice can ease blood circulation and joint pains.
- Floating rice uses less chemical inputs, so there are less chemical residues in soil and water.
- If floating rice farmers continue to produce on existing rice fields and keep -Roneam trees in their rice field, floating rice can contribute to Fishery Natural Resources management.
- Floating rice and animal grazing is a harmonious combination. **Consumer**
- Health degradation caused by chemical inputs
- Negative impact of agriculture on environment

The future is in our hand

OR

Produce in harmony "rice - agrobiodiversity - human"?

Ecosystem Services and Land Use Research Centra

Thank you for your attention

Ecosystem Services and Land Use Research Centra