Agro-ecology Workshop Siem Reap 30-31 October 2014

Bio Inputs

By **Dr. Tan Boun Suy** APSARA National Authority

Outline

1. Natural Stimulant *Khmer Effective Microorganisms* (KEM)

- 2. Natural Fertilizers
 - Compost
 - Green Manure

NATURAL STIMULANT

Khmer Effective Microorganisms (KEM)

Khmer Beneficial Microorganisms

What are KEM ?

- KEM are not Fertilizers
- KEM are natural stimulant
- KEM are made by
 - Khmer raw materials:
 - Sugar palm
 - Water (safe)
 - Morinda citrifolia L. Fruit
 - Indigenous Microorganisms

How to prepare KEM ?

- 1 part of Sugar palm
- 3 parts of Morinda citrifolia fruit
- 10 parts of Water (safe water: non polluted, non chlorated)

+ natural Microorganisms

from non polluted air, non polluted fruit

KEM benefit from beneficial effects of

- *Morinda citrifolia* fruit
- Beneficial Microorganisms: more than 80 species living with synergy, gathered in 3 groups:
 - 1. Yeast
 - **2.** Lactic Acid Bacteria (Lactobacillus)
 - **3.** *Photosynthetic Bacteria*

Fields of KEM Utilization

- **1. Activation of compost making**
- 2. Rice crop
- 3. Vegetables
- 4. Mushroom
- 5. Poultry, Pig raising
- 6. Fish raising
- 7. Cow Scarlet Fever

Activation of Compost making by KEM (Tuk Vil Station)

 Objective of the trial: to improve the quality of Compost and the yield of composting , to speed up the composting process ;
 Methodology: compare 3 piles of compost

1. Control: without KEM (watering)

2. KEM at 5% rate

3. KEM at 10% rate

3. Results : Pile 10% KEM > Pile 5% KEM> Control4. Recommendation

Compost activation by KEM

Experiences 1, 2 and 3

Compost activation by KEM:

improvement of physico-chemical properties

Experience 1

Compost activation by KEM

improvement of physico-chemical properties Experience 2

Compost activation by KEM

improvement of physico-chemical properties Experience 3

KEM in Rice crop (Tuk Vil Station)

1. Objective of experimentation : to compare the efficiency of Natural Fertilizers with Chemical Fertilizers on Rice Crop (Sen Pidor)

2. Methodology: RCBD with 5 treatments

T1: Compost 20T/ha

T2: Compost 10T/ha + Bokashi 10T/ha

T3: Compost 5T/ha + Bokashi 5T/ha

T4: Compost 10T/ha + KEM 150L/ha

T5: DAP 60Kg/ha + Urea 100Kg/ha (N2P1)

3. Results: T4 = T5

T4>T1; T4 > T2 >T3

4. Recommendation

KEM in vegetable crop

Bitter Gourd case study (at Chamcar Daung University)

- Objective of experimentation: to compare the efficiency of KEM
 + Cow dung with other organic fertilizers
- 1. Methodology: RCBD with 4treatments
 - T1: Cow Dung 15T/ha
 - T2: Compost Scaro 15T/ha
 - T3: Cow dung 3T/ha + KEM 100L/ha
 - T4: Bokashi 6T/ha
- 3. Results: **T3** > **T2** > **T1** > **T4**
- 4. Recommendation

KEM in Mushroom production

(experimentation made by National Agriculture School Kg Cham)

- **1. Objective**: to compare the efficiency of KEM used in medium with other inputs
- 2. Methodology: RCBD, 4 treatments

 T1: classical medium (100kg) + Urea (0.5kg)

 T2:
 " + KEM (1.0 L)

 T3:
 " + Sesbania (4Kg)

 T4:
 " + Leucocephala (4Kg)

- 3. Results: T2 >> T1 >> T3 = T4
- 4. Recommendation

KEM in traditional raising of Chicken

• In Cambodia, chickens suffer the stress induced by climate change along the year resulting

in high rate of mortality.

- KEM treatment allows to reduce the mortality rate without vaccine use
- KEM treatment favors fast growing

KEM Efficiency in Traditional Raising of Chicken

		TOTAL Chicken	DEAD Number	DEAD %
DRY SEASON 2007				
	TREATED KEM	3298	89	2.6
	NON TREATED	1656	737	44
RAINY SEASON 2007				
	TREATED KEM	2841	121	4.2
	NON TREATED	1095	298	27.2
KEM RATE 2 ml diluted in 1 L water	Recommended 2 ml KEM for 10 Chicken/Day			

KEM Efficiency in Fish Raising (Pangassius Hypophthalmus case study)

- **1. Objective of experimentation**: *to compare KEM with other inputs.*
- **2. Studied Factors**: Fodder, water transparency, O2, NH3, pH Phytoplankton, Zooplankton
- 3. Treatments:

T0: Control T1: KEM (10L in 10 m3 water/week) T2: KEM + Cow Dung T3: Cow Dung

3. Results: T2> T1 > T3 >T0

How to cure Cow Scarlet Fever ? (fièvre aphteuse bovine)

Provide 4 L of KEM (4% in water) 3 times/day

Result -After 3 days of treatment, the animal is cured

Note: The other cows in the same barn have to be submitted to the same treatment.

NATURAL FERTILIZERS

1. Compost 2.Green Manure

COMPOST

- 1. How to eliminate plant disease and weed seed ? by Compacting each layer (5 layers)
- 2. What are the appropriate size of compost pile? 1.5m x 2m x 1,5m
- **3.** Balance of different raw materials:
- dry waste 1.2T, Chicken(Cow)dung 0.2T, Lime 5Kg;
- 4. Maintain appropriate humidity
- 5. How to improve yield & quality of composting ? KEM
- 6. How to speed up the compost processing?

Grind the raw material, Activate by KEM

Utilization of Bad compost : weed seeds have not been

eliminated; weed grows as huge as lettuce

GREEN MANURE in Rice Crop (Tuk Vil Station)

First Results

1. Cassia siamensis (20T/ha in 3 applications)

Control: 1.7T/ha Cassia siamensis: 2.3T/ha (35% better)

2. Chromoleana sp. (15T/ha)

Control: 1.8T/ha Chromoleana: 2.2T/ha (20% better)

Follow up of Lettuce and Green Cabbage grown in 8 plots (8 treatments), at Tuk Vil Organic Farm

(January 2013 to October 2014)

Objective

- We would like to replace chemical fertilizer by organic fertilizer.
- We use Compost as main organic fertilizer combined or not with the natural stimulant, KEM and Green manure (*Chromoleana odorata*). Chemical fertilizer(15.15.15.) are used alone(T5) or with Compost and KEM(T3 and T6).
- The Control T0 consists of natural soil, without any input.

Methodology

 In classical experimentation, to carry out the RCBD in the field is proven delicate due to soil

heterogenity.

- The soil of the block (with different treatments) has to be homogene. Well, even on small plots, the soil changes rapidly.
- To determine the effect of the treatments, we prefer to follow the same treatments during several crop cycles and hope to find at the end, its trend along the different seasons of 2-3 years.

Long term multipurpose trial

(Tuk Vil station on 2 crops)

Treatments	Compost	15.15.15	KEM	Chromoleana
T1	0	0	0	0
T2	2kg/m2	0	0	0
Т3	2kg/m2	10g/m2	3 watering/week	0
Τ4	2kg/m2	0	3 watering/week	0
T5	0	40g/m2	0	0
Т6	2kg/m2	20g/m2	3 watering/week	0
Τ7	2kg/m2	0	3 watering/week	1kg/m2
Т8	2kg/m2	0	3 watering/week	2kg/m2

Results

Plots (2m2): Weight of Crops(Kg) in 2013

	T1	T2	Т3	T4	T5	Т6	T7	Т8	
	Control	Compost	Compost	Compost		Compost	Compost	Compost	
		2Kg/m ²	2Kg/m ²	2Kg/m ²		2Kg/m ²	2Kg/m ²	2Kg/m ²	HARVEST
			15.15.15		15.15.15	15.15.15	Chromoleana	Chromoleana	date
			10g/m ²		40g/m ²	20g/m ²	1Kg/m ²	2Kg/m ²	
			KEM	KEM		KEM	KEM	KEM	
Lettuce	0.9	1.5	3.2	3.2	3.0	3.6	3.6	3.8	16/01/13
Green	1 0	Э Г	4.0	4.2	4.0	4.2	4 5	4 7	22/02/12
Cabbage	1.0	2.5	4.0	4.2	4.0	4.5	4.5	4.7	23/02/13
Lettuce	0.9	1.6	3.5	3.3	2.9	3.7	3.5	3.6	02/04/13
Lettuce	0.3	0.5	0.9	0.9	0.6	1.2	0.8	1.0	05/06/13
Green	0 1	1 7	1 /	16	0.4	16	16	1 2	20/00/12
Cabbage	0.1	1.2	1.4	1.0	0.4	1.0	1.0	1.2	20/09/13
Lettuce	0.7	1.0	1.8	1.5	1.0	2.7	2.1	1.8	29/10/13

Results

Plot (2m2): Weight of Crops(Kg) in 2014

	T1	T2	Т3	T4	T5	Т6	Т7	Т8	
	Control	Compost	Compost	Compost		Compost	Compost	Compost	
		2Kg/m ²	2Kg/m ²	2Kg/m ²		2Kg/m ²	2Kg/m ²	2Kg/m ²	HARVEST
			15.15.15		15.15.15	15.15.15	Chromoleana	Chromoleana	date
			10g/m ²		10g/m ²	20g/m ²	1Kg/m ²	2Kg/m ²	
			KEM	KEM		KEM	KEM	KEM	
Green Cabbage	0.8	1.8	3.5	3.5	3.0	7.5	5.0	6.0	13/01/14
Lettuce	0.9	1.8	4.8	4.6	3.6	4.9	5.8	6.0	03/03/14
Green Cabbage	0.2	0.5	0.6	0.5	0.5	0.7	0.8	0.9	17/04/14
Lettuce	0.6	0.9	1.5	1.2	0.4	2.6	2.4	2.0	10/08/14
Green Cabbage	0.9	1.2	2.4	1.3	0.2	3.5	2.5	2.2	09/10/14

Comments

- **T1: Control,** without any input. It naturally gives le lowest harvest
- Comparison T3 (Compost + 15.15.15. 10g + KEM) and T4 (Compost + KEM) : on the whole, the results are similar, so no need to use 15.15.15.
- Comparison T3 (Compost + 15.15.15. 10g + KEM) or T4 (Compost + KEM) and T5 (15.15.15. 10g)

T3 > T5 T4 > T5

The chemical fertilizer used alone gives the lowest yield

Comparison T3 (Compost + 15.15.15. 10g + KEM) and T6 (Compost + 15.15.15. 20g + KEM)

Except in January, the yield is not doubled with 15.15.15 at a rate 2 times

higher(20g/m2), so 10g is enough.

 Comparison T7 (Compost + Chromoleana 1Kg/m2 + KEM) and T8 (Compost + Chromoleana 2 Kg/m2 + KEM)

The yield is not doubled with Chromoleana at a rate 2 times higher, on the whole, we got similar production.

So, 1 Kg/m2 of Chromoleana is enough.

Comparison T3 (Compost + 15.15.15. 10g + KEM) and T7 (Compost + Chromoleana 1Kg/m2 + KEM)

T7 gave better yield in majority of cases. The use of Chromoleana is preferable to chemical.

Recommendations

- First choice: T4 (Compost + KEM) or T7 (Compost + Chromoleana 1Kg/m2 + KEM)
- Second choice: T3 (Compost + 15.15.15.10g + KEM)

It is necessary to follow up the results obtained by the farmers and to record all data dealing with the crop growth conditions.

for your kind attention