ACIAR's Contribution to Lowland Rice Technologies in Laos

John Mullen, Bill Malcolm and Bob Farquharson

NAFRI Anniversary Seminar April 26, 2019

Rice in Laos

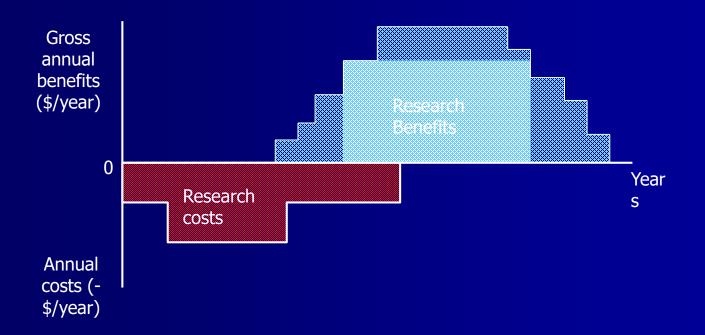
- 700,000 families grow rice semi-subsistence
- Lowland wet season rice 80% of total
- Irrigated dry season rice < 15%

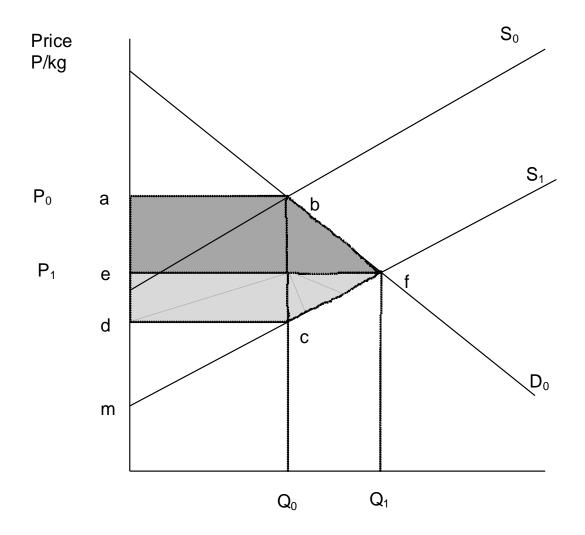
- Every year part of the country affected by drought or flood
- Most rice has been hand transplanted

"My question is: Are we making an impact?"

This Impact Assessment

- Focus on 3 projects part funded by ACIAR, led by
 Prof. Shu Fukai from UQ with partners in Laos
- Projects ran from 1996 to 2012
- Aimed to improve welfare of lowland rice growers
 - developing varieties more tolerant of drought
 - Adapting direct seeding for use in Laos
 - Develop various forms of scientific capacity
 - Other objectives whose impact was likely small
- Reported in Mullen et al. (2019) IAS Report 97


Drought Tolerant Varieties


- Every year between 1966 and 2002 (37 years) 'at least part of the country was affected by either drought or flood,......'.
- Incentive to develop varieties with a shorter growing season more tolerant of dry conditions
- 3 varieties released and 15 tested and adopted

Direct Seeding Technology

- Hand transplanting is onerous and labour intensive
- Labour has become scarce with economic dev'ment
- Direct seeding offers flexibility dry seeding
- Weed control is a major hurdle
- Several methods of direct seeding

- Successful research leads to a stream of benefits
- Lags between research, development and adoption

$$\Delta$$
 TS = Δ CS + Δ PS
= Po*Qo*k(1 + 0.5*Z*n)
n = 0.5, s = 1.5

Conventions used in our Analysis

- 5 % discount rate
- Real 2017 Values using Aust. & Laos GDP deflators
- Present values in 2017 obtained by compounding forward costs and returns prior to 2017 and discounting back returns after 2017 at 5%
- Real Laotian returns converted to \$AUD at the exchange rate in 2017
- Elasticities: Demand 0.5 Supply 1.5

Economic Analysis

	Present Values mill. 2017 \$AUD (5% discount rate)
Investment by ACIAR and partners	14.1
Benefits:	
Drought Tolerant Varieties	18.5
Direct Seeding	44.1
Total Benefits	62.6
Net Present Value	48.5
Benefit Cost Ratio	4.4:1
Internal Rate of Return	16.1%
Modified IRR (5%)	11.5%

Social Impact

- Direct Seeding releases family labour from onerous work
- There are off-farm opportunities at a market rate of 60,000 kip per day
- Not practical for all women and children to work off – farm
- Allows them to work on other enterprises, and household and leisure activities
- We have valued all labour released at 60,000 kip/day
- Risk in a semi subsistence context complicates this issue

Capacities Built

- 144 scientific and conferences papers, some cited
 100 600 times
- Generic skills thru informal training included:
 - trial management; experimental design; data analysis; scientific writing; English language and presentation skills; Joining scientific networks
- Technical Skills also developed
- 18 people undertook postgraduate study some funded by ACIAR – some returned to the project
- Farmer skills developed thru PVS trials

Plausible Causal Pathways

- Was the technology profitable on-farm?
- Was it adopted by farmers?
- Why is it likely that the ACIAR team was influential?
- What share of benefits can be attributed to the ACIAR team?
- How would the industry have developed otherwise?

On – farm k-shifts

- Both technologies profitable enough to encourage significant adoption
- New varieties yield gain of 5% translates to a kshift of 0.33
- Direct seeding cost savings net of yield losses gives a k shift of 8.3% in WS and 9.7% in DS
- However both technologies are likely to have +ve and –ve impacts on the exposure of farm families to risk

On —farm Benefits per Hectare from New Varieties — Wet Season

	Existing Varieties	Without New Varieties
Yield	3,000 Kg/ha	2,850
Price	2,500 Kip/kg	2,500
Gross income	7,125,000	6,768,000
Variable Costs	5,540,000	5,540,000
Gross Margin	1,585,000	1,228,000
Unit Costs	1,847	1,994
Net Benefit - K	120 kip/ha	3.3%

On —farm Benefits per Hectare from Direct Seeding — Wet Season

	Existing Varieties	New Varieties
Yield	3,000 Kg/ha	2,700 kg/ha
Price	2,500 Kip/kg	2,500 Kip/kg
Gross income	7,125,000	6,412,500
Labour	75 days/ha	51 days/ha
Variable Costs	5,540,000	4,010,000
Gross Margin	1,585,000	2,402,500
Unit Costs	1,847	1,485
Net Benefit - K	208 kip/ha	8.3%

Adoption of Better Varieties

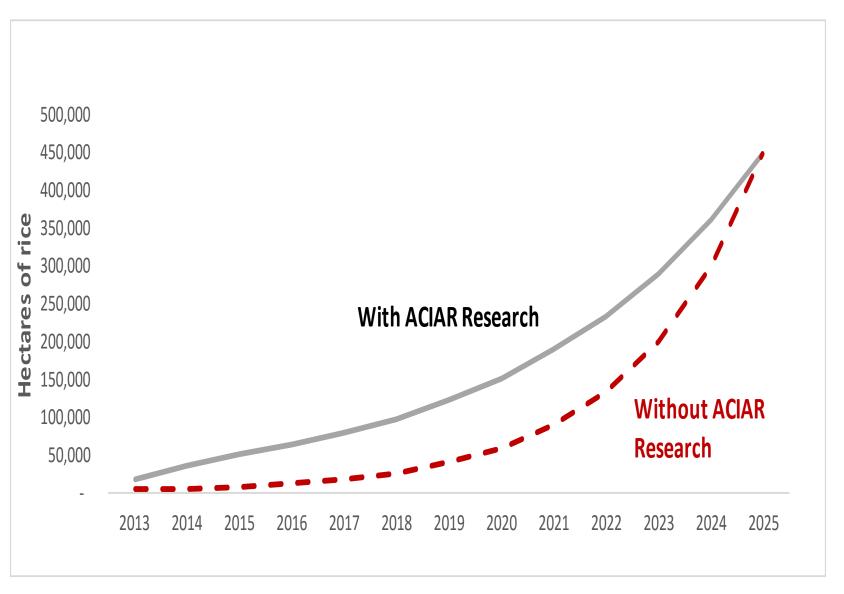
- TDK13, VTE450-2 (Vientiane 2) and TDK36 (Pakcheng 1) and TDK11
- Adoption started in 2008
- Projects finished in 2016
- 10% of production in lowland rice came from 'ACIAR' varieties starting in 2008;
- At least one of the ACIAR varieties was grown in the districts that responded to an informal survey

Adoption of Direct Seeding

- Little data on adoption
- Fukai et al. suggested 50,000 ha in 2016
- No direct seeding before 2014
- 500,000 ha expected in 2026

The 'Without ACIAR' Scenarios

- "without project' yields grow more slowly but converge to 'with project' yields in 2020 as Fukai's influence on yield gains declined from 2016
 - Yields converge in 2020


- Fukai's basic direct seeding research still required hence
 - 5 year delay in commencement of adoption
 - Adoption converges to 500,000 ha in 2026

Yield Profile for Drought Tolerant Varieties

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Adoption Profile for Direct Seeding

Why is it likely that the ACIAR team was influential?

- Technologies had to be adapted to Laos
- Fukai's skills in agronomy and physiology complemented Lao plant breeding skills
- Fukai built capacity in quantitative genetic methods
- Fukai did basic research for direct sowing
- Strong emphasis on farmer participatory research (about 800 farmers)
- Strong capacity building components
- The respect accorded Fukai in Laos was obvious to us

Benefits Attributable to ACIAR

Lao plant breeders attributed 30% of the benefits
 from drought tolerant varieties to the ACIAR projects

■ The basic research underlying direct seeding was undertaken. Later projects by others built on this work

 60% of direct seeding benefits attributable to the ACIAR projects

Economic Analysis

	Present Values mill. 2017 \$AUD (5% discount rate)
Investment by ACIAR and partners	14.1
Benefits:	
Drought Tolerant Varieties	18.5
Direct Seeding	44.1
Total Benefits	62.6
Net Present Value	48.5
Benefit Cost Ratio	4.4:1
Internal Rate of Return	16.1%
Modified IRR (5%)	11.5%

Conclusions

- This set of projects has been a good investment
 from ACIAR's perspective
- Data on adoption of the technologies and other parameters was scarce
- HOWEVER This finding is robust to halving key adoption and attribution parameters
- A full reports is available as ACIAR IAS No. 97