Agrochemicals, GHG Emissions, and GDP in Southeast Asia: A Machine Learning Approach with Hierarchical Clustering

Agrochemical use, GHG emissions, and gross domestic product (GDP) vary widely across Southeast Asia, making the region suitable for cluster-based sustainability analysis. This study applies hierarchical clustering analysis (HCA) to classify nine Southeast Asian countries using four standardized indicators: pesticide use, nitrogen fertilizer use, GHG emissions, and GDP. Exploratory data analysis reveals significant disparities, with Brunei and Indonesia emerging as outliers due to exceptionally high input intensity and emissions, respectively. HCA identifies four distinct clusters: (1) low-input, low-emission economies (Cambodia, Laos, Myanmar); (2) moderately intensive systems (Malaysia, Thailand, the Philippines, Vietnam); (3) a high-pesticide profile (Brunei); and (4) a high-emission, high-output outlier (Indonesia). Principal Component Analysis confirms the cluster structure and highlights variation in emission efficiency. The findings show that similar agroecological contexts can yield divergent environmental outcomes, emphasizing the role of policy and technology. This study provides the first region-wide, data-driven typology of agricultural sustainability in Southeast Asia using HCA.

Dữ liệu và nguồn

Thông tin khác

Miền Giá trị
loại hình sản phẩm của ALiSEA Không
Tiêu đề Agrochemicals, GHG Emissions, and GDP in Southeast Asia: A Machine Learning Approach with Hierarchical Clustering
Mô tả Agrochemical use, GHG emissions, and gross domestic product (GDP) vary widely across Southeast Asia, making the region suitable for cluster-based sustainability analysis. This study applies hierarchical clustering analysis (HCA) to classify nine Southeast Asian countries using four standardized indicators: pesticide use, nitrogen fertilizer use, GHG emissions, and GDP. Exploratory data analysis reveals significant disparities, with Brunei and Indonesia emerging as outliers due to exceptionally high input intensity and emissions, respectively. HCA identifies four distinct clusters: (1) low-input, low-emission economies (Cambodia, Laos, Myanmar); (2) moderately intensive systems (Malaysia, Thailand, the Philippines, Vietnam); (3) a high-pesticide profile (Brunei); and (4) a high-emission, high-output outlier (Indonesia). Principal Component Analysis confirms the cluster structure and highlights variation in emission efficiency. The findings show that similar agroecological contexts can yield divergent environmental outcomes, emphasizing the role of policy and technology. This study provides the first region-wide, data-driven typology of agricultural sustainability in Southeast Asia using HCA.
Lĩnh vực Nông nghiệp sinh thái
  • Giảm đầu vào và tái chế
  • Khí hậu
Từ khóa nông sinh thái
  • Kiểm soát hóa chất đầu vào
  • Trung hòa carbon
  • Biến đổi khí hậu
  • Giảm khí nhà kính
Các tổ chức đóng góp Universitas Syiah Kuala, Konstanta Utama and The Bartlett School of Environment, Energy and Resources, University College London and Universitas Abulyatama
Tác giả Fazli, Q. S., Idroes, G. M., Hilal, I. S., Hafizah, I., Hardi, I., & Noviandy, T. R.
Năm 2025
Loại tài liệu Scientific & Research
Ngôn ngữ Tiếng anh
Quốc gia Đông Nam Á
Cấp hành chính 1
Cấp hành chính 2
Web Link https://doi.org/10.61975/gjbes.v2i2.93